DATE: June 10, 1981 # memorandum Julie 10, 130 ATTNOF: Chief, Central Laboratory, WRD, Denver, CO BUBLECT: REPORTS AND STATISTICS - Water Quality: Results of the St. Louis Park water samples To: District Chief, WRD, Minneapolis MN Attn: Marc Hult, WRD, St. Paul, MN The custom analysis on six water samples from the St. Louis Park area have been completed. The methods, procedures, and results for polynuclear aromatic hydrocarbons (PNA) by liquid chromatography are described in Chemist's Report I and by gas chromatography/mass spectrometry (GC/MS) in Chemist's Report II. Other organic compounds tentatively identified by GC/MS are reported in Chemist's Report II. ### CHEMIST'S REPORT I Six water samples (SLP #4, SLP #15, W-117, Flame Ind., W-13, and P-14) from Minnesota were each extracted with three - 40 mL, portions of high performance liquid chromatographic (HPLC)-grade methylene chloride. The sample and the bottle were weighed before and after extraction. The methylene chloride extract was dried over sodium sulfate in a dark, explosion-proof refrigerator, for 2 hours or longer. (Previously, the sodium sulfate had been burned at 350°C for approximately 12 hours.) One-half milliliter HPLC-grade acetonitrile was added to the organic extract which was reduced to approximately 4 mL in a Kuderna-Danish (K-D) concentrator. Special treatment was required with sample W-13. The interface between the methylene chloride and the aqueous layer on W-13 was not clearly discernable. A maximum amount of methylene chloride was removed from the separatory funnel without collecting any of the emulsified aqueous portion. Since some methylene chloride remained emulsified with the discarded aqueous layer, a portion of some constituents were lost. Therefore the reported values on W-13 are considered "minimum" values. Sample P-14 was not concentrated after the K-D concentration step. The other samples were concentrated below 4 mL using an evaporative concentrator with dry, inert nitrogen flowing over the surface. After concentrating to 500 μL ., 250 μL . were transferred to a micro-insert vial in the autoinjector and 100 μL . were injected into the high performance liquid chromatograph. The instrument, column, and gradient conditions are as follows: Instrument: Waters Associates - Model 440 (uv) detector at 254 nm. and 313 nm. Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan OPTIONAL FORM NO. 10 (REV. 7-76) GSA FPMR (41 CFR) 101-11 5010-112 Accessories: "Wisp" 710B auto-injector and the Model 720 System Controller with Data Module. <u>Column:</u> Reversed phase, Beckman "Ultrasphere" - ODS - (C₁₈) - 5 micron - 25 cm. x 4.6 mm. I.D. Conditions: 40-100% CH₃CN/H₂O - 55 min. run - 1.0 mL/min. flow rate; Chartspeed: 1.0 cm./min. Fourteen polynuclear aromatic hydrocarbon (PNA) stock standards were prepared individually from pure standard material in methylene chloride. Three working solutions (0.2-11.0 ng/µL concentration) were prepared in acetonitrile by diluting appropriate amounts of the stock solutions. The working solutions were injected preceding and following the six sample analysis run. The fourteen PNA's prepared were: - 1) Naphthalene - 2) Acenaphthylene - 3) Fluorene - 4) Acenaphthene - 5) Phenanthrene - 6) Anthracene - 7) Fluoranthene - 8) Pyrene - 9) Chrysene - 10) 1,2-Benzanthracene - 11) Benzo(a)pyrene - 12) 1,2:5,6-Dibenzanthracene - 13) Indeno (1,2,3-c,d) pyrene - 14) Benzo [g,h,i] perylene Each PNA has a characteristic absorbance peak response ratio between 254 nm. and 313 nm. This ratio, in addition to the retention times, was used to identify the PNA. The results on the six water samples showing their corresponding PNA concentrations were tabulated using integrated area counts or peak—height measurements. The results are shown on the attached table. The reported concentrations for some PNA's are higher from the analyses performed by HPLC than those performed by GC/MS. The values reported from the HPLC analyses are probably high due to two or more compounds being present under one peak. W. R. White WR White Chemist PNA Concentrations of Minnesota (St. Louis Park) samples (µg/L) | Sample | Naphthalene | Acenaphthylene | Fluorene | Acenaphthene | Phenanthrene | Anthracene | Fluoranthene | |------------------|-------------------------|--------------------------|----------|------------------------|--------------|------------|--------------| | W-13 | *220,000 | **<5,250 | *110,000 | *D-I
(interference) | *630,000 | 66,000 | *420,000 | | P-14 | *270 | <2.0 | *6.3 | *20 | *1.8 | 0.10 | <0.30 | | Flame In | nd. **<0.019 | <0.02 | **<0.002 | **<0.036 | *0.01 | <0.001 | 0.04 | | W-117 | **<0.018 | <0.02 | <0.002 | *4.9 | <0.001 | <0.001 | <0.007 | | SLP #15 | 0.07 | **<0.02 | *0.73 | **<0.035 | *0.11 | 0.07 | 0.07 | | SLP #4
(GC/MS | <0.018
did not analy | <0.02
ze this sample) | <0.002 | <0.036 | <0.001 | <0.001 | <0.007 | Detected by GC/MS and by LC Detected by GC/MS, not by LC Less than minimum detectable limit. Dilution factors are included where applicable. PNA Concentrations of Minnesota (St. Louis Park) samples (con.) $(\mu g/L)$ | Sample | Pyrene | Chrysene | 1,2
Benzanthracene | Benzo(a)
pyrene | 1,2:5,6 Di-
benzanthracene | Indeno-
(1,2,3-c,d)
pyrene | Benzo
[g,h,i,]
Perylene | |-----------|----------|----------|-----------------------|--------------------|-------------------------------|----------------------------------|-------------------------------| | W-13 * | 500,000 | **<360 | *300,000 | *160,000 | 16,000 | 27,000 | *92,000 | | P-14 | 0.85 | <0.14 | <0.12 | <0.18 | <0.27 | <0.09 | <0.29 | | Flame Ind | . <0.006 | <0.001 | <0.003 | <0.005 | <0.012 | <0.002 | <0.007 | | W-117 | <0.006 | <0.001 | <0.003 | <0.004 | <0.012 | <0.002 | <0.007 | | SLP #15 | <0.006 | <0.001 | <0.003 | <0.005 | <0.012 | <0.002 | <0.007 | | SLP #4 | <0.006 | <0.001 | <0.003 | <0.005 | <0.012 | <0.002 | <0.007 | Detected by GC/MS and by LC Detected by GC/MS, not by LC Less than minimum detectable limit. Dilution factors are included where applicable. #### CHEMIST'S REPORT II Six samples were received from the Minnesota District for acad/base-neutral extractables and volatiles analyses (one sample. St # for acid/base-neutral extractables was received broken). The samples for acid/base-neutral extractables were adjusted to pH 11 and e選racted with three 50 mL portions of methylene chloride (extracts for each sample were composited). The samples were then adjusted to pH 2. saturated with 50 mL di-ethyl ether, and extracted as above with three 50 mL portions of methylene chloride. (NOTE: Sample W-13 contained a visible organic layer which was emulsified and co-extracted with the water phase. Due to the dark coloration of this sample. the interface between the extraction solvent and the water phase was difficult to determine. Consequently, the extracts containing the base-neutral components were conservatively withdrawn leaving an ambiguous emulsion. The emulsion was withdrawn into a separate flask to avoid contamination during the acid component extractions. This emulsion was not composited with the base-neutral extracts, but is believed to contain a great deal of the base-neutral components. Therefore, estimated concentration figures listed should be presumed to be minimum values.) The composited extracts were reduced using a Kuderna-Danish concentrator and further reduced to approximately 0.5 mL using a nitrogen evaporator. Sample nos. P-14 and W-13 were known to be heavily contaminated and were diluted 1:10 and 1:2000 respectively for base-neutral analyses and 1:10 and 1:20 respectively for acid analyses. The extracts were submitted for gas chromatography/ mass spectrometric analysis. 10 μg of the internal standard, d₁₀-biphenyl, were added to each extract (or 0.5 mL aliquot of the diluted extract). Approximately 1 μ L of the extract was injected onto a 25m x 0.25mm i.d. SE-54 coated fused silica capillary column using the Grob (splitless) injection technique. The gas chromatograph was temperature programmed as follows: Initial temperature 50°C hold for 5 min., program to 300°C at 6°C/min., hold 300°C for 15 min. The mass spectrometer was scanned from 35 to 450 amu at 1 sec/scan. interest were determined using the Biemann-Biller search routine. Spectra were tentatively identified using a computer assisted search of the National Bureau of Standards (NBS) mass spectral library. Those spectra meeting specified "Purity" and "Fit" criteria are given tentative identification in the accompanying tables. "Purity" and "Fit" are indicators of how closely the unknown spectrum resembles the library spectrum with the best possible value for each beins "1000". Concentrations were estimated by comparing the base peak of the internal standard (m/e 164) with the base peak of the identified spectrum, assuming a relative response factor of 1.0. The concentration estimates may be considered to be accurate to the nearest order of magnitude. The detection limit for this method is on the order of 1 μ g/L for all compounds except for diluted samples P-14 and W-13, for which the detection limits for the base-neutral analyses would be 10 μ g/L and 2000 μ g/L respectively and for the acid analyses would be 10 μ g/L and 20 μ g/L respectively. Samples for volatiles analyses were analyzed per "Determination of Selected Volatile Organic Priority Pollutants in Water by Computerized Gas Chromatography-Quadrapole Mass Spectrometry" by W. Pereira and B. Hughes as published in the <u>Journal of the American Water Works Association</u>, April, 1980. The samples were analyzed quantitatively for the following compounds and qualitatively for all others reported: (— on the volatiles tables indicates no quantitation was done.) Methylene Chloride Cyclohexane Benzene Trichloroethene Toluene Ethylbenzene The detection limit for volatile compounds is on the order of 1 µg/L for all samples analyzed. Michael Stooks Michael Brooks Chemist There is no cost for these analyses in accordance with the agreement made by our previous laboratory chief. Rolly Grabbe had recommended that we retrest samples from you to test our new PNA method on waters containing detectable quantities of PNA's and to test our GC/MS method, used for oil shale retort waters, on the coal tar waste waters. The you have questions, please call Rolly Grabbe at FTS 234-4992. Howard E. Taylor Chief, Denver Central Laboratory ----- rw Attachments cc: H. Feltz, WRD, Reston, VA Analytical Services Coordinator, Reston, VA Chief, Atlanta Central Laboratory Regional Hydrologist, NE, Reston, VA Regional Hydrologist, CR, Denver, CO Table 1. SLP #15 | Scan | Tentative
Identification | <u>Purity</u> | Fit | Est. Conc. (µg/L) | |--|--|---|---|---------------------| | Base Teut | ral: | | · · · · · · · · · · · · · · · · · · · | 7 | | 629
841
1203
1259
1300
1349
1390
1477
1715 | 2,3 dihydro-1H-indene 4-methyl-2,3-dihydro-1H-indene biphenyl dimethylnaphthalene acenaphthylene acenaphthene dibenzofuran fluorene phenanthrene | 922
920
885
913
931
978
943
915
664 | 992
950
898
926
954
989
980
955
858 | 1 <1 <1 <1 1 1 1 <1 | | Acid: | | | | | | 541 | phenol | 922 | 962 | 4 | | Volatiles | S: | | | | | 59
154
220
220 | methylene chloride
pentane
benzene
trichloroethene | 975
939
457
490 | 993
958
985
996 | 9

1
2 | Table 2 Flame Ind. | Tentative
<u>Identification</u> | <u>Purity</u> | <u>Fit</u> | Est. Conc. (µg/L) | |--|--|--|---| | al: | | | | | 2,3-dihydro-1H-indene naphthalene 1-(2-butoxy ethoxy)ethanol | 824
976
855 | 954
996
984 | <1
1
15 | | acenaphthene
fluorene
phenanthrene | 910
881
709 | 924
915
818 | <1
<1
<1 | | | W - 10-12-12-12-12-12-12-12-12-12-12-12-12-12- | | · | | pheno l | 940 | 982 | 1 | | | · · · · · | _ | | | methylene chloride 1,1,1-trichloroethane benzene trichloroethene | 800
498
669
 | 976
-743
986
 | 5
1
<1
<1 | | | Identification al: 2,3-dihydro-1H-indene naphthalene 1-(2-butoxy ethoxy)ethanol acenaphthene fluorene phenanthrene phenol methylene chloride 1,1,1-trichloroethane benzene | Identification Purity al: 2,3-dihydro-1H-indene 824 naphthalene 976 1-(2-butoxy ethoxy)ethanol 855 acenaphthene 910 fluorene 881 phenanthrene 709 methylene chloride 800 1,1,1-trichloroethane 498 benzene 669 trichloroethene | Identification Purity Fit al: 2,3-dihydro-1H-indene 824 954 naphthalene 976 996 1-(2-butoxy ethoxy)ethanol 855 984 acenaphthene 910 924 fluorene 881 915 phenanthrene 709 818 phenol 940 982 methylene chloride 800 976 1,1,1-trichloroethane 498 743 benzene 669 986 trichloroethene | Table 3 | Scan Base-Weut | Tentative Identification ral: | <u>Purity</u> | <u>Fit</u> | Est. Conc. (µg/L) | |----------------|---------------------------------|---------------|------------|-------------------| | 224 | tetrachloroethene | 974 | 000 | 25 | | 224
360 | xylene | 974
942 | 998
992 | 25
2 | | 423 | (1-methylethyl)benzene | 942
919 | 970 | <1 | | 532 | ethylmethylbenzene | 915 | 985 | 1 | | 640 | 2,3-dihydro-1H-indene | 910 | 994 | 30 | | 040 | 2,3-d mydro-in-indene | 910 | 994 | 30 | | 722 | dihydrobenzofuran | 815 | 896 | <1 | | 734 | methy1-2,3-dihydro-1H-indene | 867 | 994 | 3 | | 756 | 7-methylbenzofuran | 906 | 978 | 3
2 | | 763 | 3-phenyl-2-propenal | 915 | 994 | 1 | | 772 | 2-methylbenzofuran | 871 | 967 | 1 | | 845 | methyl-2,3-dihydro-1H-indene | 813 | 955 | 2 | | 854 | 1,2,3,4 tetrahydro-1,4-methano- | 0_0 | | _ | | | naphthalen-9-one | 868 | 933 | 1 | | 902 | naphthalene | 920 | 973 | <1 | | 910 | dimethy1-2,3-dihydro-1H-indene | 851 | 895 | <1 | | 927 | dimethy1-2,3-dihydro-1H-indene | 869 | 925 | <1 | | 1018 | 2,3-dihydro-benzo/B/thiophene | 917 | 996 | 2 | | 1059 | 2,3 dihydro-1H-indene-1-one | 847 | 992 | <1 | | 1068 | methylbenzo/B/thiophene | 919 | 984 | . 1 | | 1102 | methylbenzo/B/thiophene | 888 | 966 | <1 | | 1157 | diethylphenol | 807 | 916 | 1 | | 1164 | dimethyl(methylethyl)benzene | 785 | 953 | <1 | | 1184 | 2-(2 methyl-2-propenyl)phenol | 804 | 929 | < <u>1</u> | | 1254 | pentamethylbenzene | 840 | 928 | <1 | | 1350 | acenaphthene | 942 | 992 | 2 | | 1688 | 3-methyl-2(1H)-quinolinone | 813 | 906 | <1 | | 1755 | 4-methyl-2(1H)-quinolinone | 803 | 876 | <1 | | Acid: | | | | | | 529 | phenol | 926 | 981 | 1 | D Table 3 (con.) | | Volaties: | | | | | |-----|--------------|----------------------------|-----|-----|-----| | | 59 <u> </u> | methylene chloride | 821 | 981 | 9 | | | 87 | dichloroethene (3 isomers) | 784 | 990 | | | , | 124 | dichloroethene | 971 | 997 | · · | | 1,} | 134 | dichloroethene | 978 | 997 | | | ,. | 154 | pentane | 787 | 907 | | | | 169 | cyclohexane | 854 | 961 | 2 | | | ½ 19 | benzene | | | 10 | | | 220 | trichloroethene | 922 | 995 | 500 | | | 4 305 | tetrachloroethene | 976 | 995 | 280 | | | 316 | toluene | 882 | 956 | <1 | | | √ 363 | ethylbenzene | 834 | 969 | <1 | Table 4 P-14 | Scan # | Tentative Identification | <u>Purity</u> | <u>Fit</u> | Est. Conc. (µg/L) | |---------------------------------|--|---------------------------------|---------------------------------|-------------------------| | Base-Neut | rai: | | | | | 259 | cyclohexanone ethylbenzene xylene dimethylthiophene xylene | 867 | 890 | <10 | | 291 | | 944 | 998 | 500 | | 305 | | 922 | 987 | 400 | | 319 | | 893 | 961 | <10 | | 351 | | 922 | 983 | 250 | | 415 | (1-methylethyl)benzene methyl cyclohexanol 2-propenylbenzene ethylmethylbenzene trimethylbenzene | 941 | 997 | 30 | | 438 | | 848 | 972 | <10 | | 459 | | 907 | 947 | <10 | | 491 | | 899 | 997 | 100 | | 505 | | 920 | 996 | 50 | | 525 | aniline ethylmethylbenzene benzonitrile ethylmethylbenzene benzo furan | 929 | 998 | 10 | | 527 | | 849 | 925 | 30 | | 539 | | 835 | 996 | 30 | | 555 | | 905 | 975 | 300 | | 562 | | 863 | 958 | 400 | | 612 | trimethylbenzene 2,3-dihydro-1H-indene 1H-indene 2-methylphenol 3-methylphenol | 893 | 994 | 50 | | 639 | | 910 | 994 | 300 | | 659 | | 914 | 981 | 700 | | 680 | | 931 | 997 | 150 | | 723 | | 894 | 983 | 300 | | 744 | trimethyl-2-cyclopenten-1-one | 794 | 967 | <10 | | 756 | methylbenzofuran | 902 | 978 | 50 | | 766 | 3-phenyl-2-propenal | 926 | 994 | 100 | | 775 | dimethylphenol | 873 | 997 | 300 | | 828 | 1-methyl-2,3-dihydro-1H-indene | 795 | 823 | 20 | | 830
836
846
854
858 | ethylphenol ethylphenol 3-methylindene dimethylphenol 1,2,3,4-tetrahydro-1,4-methano- naphthalen-9-one | 686
933
904
891
845 | 950
995
959
993
864 | 100
100
50
350 | | 866 | <pre>dimethylphenol ethylphenol naththalene dimethylphenol 1,6-dimethyl-2,3-dihydro-1H-indene</pre> | 830 | 935 | 500 | | 894 | | 848 | 947 | 250 | | 911 | | 852 | 923 | 850 | | 915 | | 831 | 937 | 150 | | 937 | | 720 | 773 | <10 | Table 4 (con.) P-14 | Base-Reu | tral: | · | | | |----------|---|-----|-----|-----| | 948 | trimethylphenol dimethylbenzo furan ethylmethylphenol trimethylphenol ethylmethylphenol | 881 | 988 | 200 | | 963 | | 825 | 921 | <10 | | 983 | | 853 | 989 | 150 | | 988 | | 866 | 982 | 200 | | 1001 | | 890 | 998 | 350 | | 1007 | ethylmethylphenol ethylmethylphenol trimethylphenol trimethylphenol diethylphenol | 844 | 985 | 250 | | 1039 | | 835 | 997 | 350 | | 1047 | | 893 | 996 | 150 | | 1054 | | 878 | 994 | 200 | | 1063 | | 720 | 919 | <1 | | 1071 | 2,3-dihydro-1H-indene-1-one | 929 | 997 | 50 | | 1087 | 2-methylnaphthalene | 868 | 997 | 500 | | 1112 | 2-methylnaphthalene | 873 | 978 | 400 | | 1155 | dimethylbenzaldehyde | 797 | 993 | 200 | | 1209 | biphenyl | 914 | 989 | 100 | | 1214 | <pre>p-(2 methylallyl)phenol pentamethyl benzene 2-ethylnaphthalene dimethylnaphthalene dimethylnaphthalene</pre> | 811 | 948 | 20 | | 1220 | | 806 | 956 | 50 | | 1229 | | 808 | 972 | 30 | | 1244 | | 803 | 948 | 20 | | 1265 | | 637 | 951 | 30 | | 1270 | dimethylnaphthalene dimethylnaphthalene dimethylnaphthalene hexamethylbenzene acenaphthene | 813 | 864 | 20 | | 1292 | | 835 | 967 | 10 | | 1313 | | 870 | 979 | 10 | | 1321 | | 780 | 921 | 20 | | 1356 | | 934 | 990 | 20 | | 1368 | triethylbenzene 2-naphthalenol 1,1'-biphenyl-2-ol dibenzofuran 1-naphthalenol | 696 | 944 | 10 | | 1388 | | 795 | 984 | 50 | | 1395 | | 774 | 936 | 30 | | 1397 | | 808 | 876 | 100 | | 1399 | | 868 | 980 | 100 | | 1429 | fluorene 2-methylnaphthalenol 1-methylnaphthalenol 4-methylnaphthalenol phenanthrene | 896 | 974 | 40 | | 1456 | | 865 | 967 | 10 | | 1477 | | 618 | 910 | 10 | | 1503 | | 665 | 911 | <10 | | 1657 | | 933 | 970 | 100 | | 1721 | 9-H-carbazole dibenzo/B,E/1,4/dioxin | 885 | 989 | 30 | | 1759 | | 804 | 891 | <10 | Table 4 (con.) P-14 | | | • | | | | |----------------|----------------|-------------------------------------|------|------------|------------------| | | Acid: | | | | · | | • | 536 📑 | phenol | 958 | 976 | 10 | | • | 675 | methylphenol | 927 | 993 | 40 | | | 719 | methylphenol | 892 | 979 | 150 | | | 766 | √dimethylphenol | 870 | 991 | <10 | | | 824 | 2-ethylphenol | 951 | 995 | 20 | | | /843 | dimethylphenol | 898 | 992 | 100 | | 2,4
2.chlor | (884 | 7 dimethylphenol | 887 | 987 | 150 | | ٠, ١ | 916 | dimethylphenol | 913 | 995 | 100 | | n // | 925 | | | | | | 2.Chlor | | 7 3-chlorophenol | 921 | 998 | 30 | | | 991 | ethylmethylphenol | 740 | 951 | 10 | | | 1025 | ethylmethylphenol | 866 | 987 | 40 | | | 1050 | benzene acetic acid | 900 | 968 | 30 | | | 1089 | 3-methylbenzoic acid | 872 | 985 | 20 | | | 1095 | 4-methylbenzoic acid | 699 | 776 | <10 | | | 1246 | dimethylbenzoic acid | 608 | 917 | <10 | | | 1411 | methylpropylphenol | 705 | 883 | 10 | | | 1604 | 2-naphthalencarboxylic acid | 841 | 970 | <10 | | | 1621 | 1-naphthalencarboxylic acid | 845 | 927 | 30 _ | | | | | 0.0 | | 720 | | | <u>Volatil</u> | es: | | | | | | √ 58 | methylenechloride | 885 | 992 | 8 - | | | 169 | cyclohexane | 691 | 908 | <1 | | | 182 | thiophene | 840 | 985 | \1 | | | 195 | cyclohexene | 928 | 975 | | | | V 219 | benzene | 948 | 973
972 | 110 | | | V 219 | benzene | 940 | 9/2 | 110 | | | ~ 220 | trichloroethene | | | 1 | | | 242 | cycloheptene | 891 | 907 | | | | 259 | methylcyclohexane | 777 | 981 | | | | 268 | tetrahydro-2-methyl thiophene | 754 | 983 | | | | 278 | 3-methyl thiophene | 868 | 975 | | | | | | 000 | 373 | | | | - 305 | tetrachloroethene Perchloroethylene | 573 | 957 | <1 | | | √ 315 | toluene | 928 | 994 | 56 | | | 332 | ethylthiophene | 833 | 980 | | | | 262 | ethylbenzene | 865 | 949 | 160 | | | 367 | dimethylthiophene | 603 | 870 | | | | 373 | dimethylthiophene | 874 | 960 | | | | , 3/3 | a micery for represe | J, 4 | 200 | | | | | | | | 2 R 3 | 283 Table 5 | Scan | Tentative
Identification | <u>Purity</u> | <u>Fit</u> | Est. Conc. | |--------------|------------------------------------|---------------|------------|--------------| | Base-Neut | ral: | | - | | | 314 | ethylbenze ne | 954 | 996 | 2,000 | | 328 | xylene = dimothy/benze | 937 | 995 | 6,000 | | 370 | xylene | 938 | 983 | 2,000 | | 502 | ethylmethylbenzene | 907 | 994 | 2,000 | | 514 | trimethylbenzene | 931 | 991 | 2,000 | | 536 | ethylmethylbenzene | 886 | 907 | 2,000 | | 562 | trimethylbenzene | 921 | 991 | 4,000 | | 567 | benzofuran | 852 | 919 | 4,000 | | 576 | hydrocarbon | | | * | | 616 | trimethylbenzene | 938 | 993 | 2,000 | | 624 | 2-propenylbenzene | 893 | 920 | <2,000 | | 640 | 2,3-dihydro-1H-indene | 915 | 988 | 20,000 | | 656 | 1-H-indene | 947 | 987 | 20,000 | | 681 | methylphenol | 924 | 982 | <2,000 | | 685 | isopropylmethyl benzene | 912 | 977 | <2,000 | | 720 | methylphenol ' | 767 | 978 | 2,000 | | 754 | 7-methylbenzofuran | 930 | 970 | <2,000 | | 760 | hydrocarbon | | | * | | . 763 | 3-phenylpropenal | 946 | 993 | 2,000 | | 786 | tetramethylbenzene | 937 | 967 | <2,000 | | 825 | 4-methyl-2,3-dihydro-1H-indene | 897 | 996 | 2,000 | | 845 | 5-methyl-2,3-dihydro-1H-indene | 699 | 948 | 4,000 | | 847 | dimethylphenol | 881 | 950 | 2,000 | | 853 | methylindene | 897 | 955 | 2,000 | | 885 | dimethylphenol | 875 | 986 | 2,000 | | 907 | naphthalene | 896 | 993 | 230,000 | | 930 | hydrocarbon | | | * | | 933 | 5,6-dimethyl-1H-benzeneimidazole | 842 | 911 | <2,000 | | 952 | hydrocarbon | | | * | | 954 | 4,7-dimethylbenzofuran | 856 | 949 | <2,000 | | 964 | hydrocarbon | | | * | | 992 | ethylmethylphenol | 775 | 940 | <2,000 | | 1008 | 1,3-dimethy1-2,3-dihydro-1H-indene | 869 | 938 | <2,000 | | 1031 | 4,7-dimethyl-2,3-dihydro-1H-indene | 625 | 846 | <2,000 | | 1046 | hydrocarbon | | | * | Table 5 (con.) | Base-Neut | ral: | | · | | | |-----------------------------------|---|--------------------------|--------------------------|------------------------------------|--| | 1067
1080
1085 | 5-methyl-benzo/B/thiophene
2-methylnaphthalene
hydrocarbon | 943
914 | 984
997 | 2,000
120,000
* | | | 1091
1105 | 6-methyl-benzo/B/thiophene
1-methylnaphthalene | 897
898 | 944
977 | 2,000
4,000 | | | 1204
1224
1230 | biphenyl
2-ethylnaphthalene
hydrocarbon | 927
856 | 988
972 | 20,000
10,000 | | | 1239
1250 | dimethylnaphthalene 3,6-dimethylbenzo/B/thiophene | 924
720 | 994
900 | 20,000 | | | 1261
1265
1287
1300 | dimethylnaphthalene
dimethylnaphthalene
dimethylnaphthalene
acenaphthylene | 915
924
918
912 | 995
994
993
982 | 10,000
10,000
6,000
4,000 | | | 1308
1316
1352
1366 | dimethylnaphthalene hydrocarbon acenaphthene hydrocarbon | 878

931
 | 966

988 | 4,000
*
8,000
* | | | 1395
1410 | dibenzofuran
trimethylnaphthalene | 913
819 | 990
944 | 60,000
4,000 | | | 1483
1494 | fluorene
hydrocarbon | 884 | 964 | 40,000 | | | 1503
1526
1543 | <pre>1-(2-propenyl)naphthalene methyldibenzofuran methyldibenzofuran</pre> | 849
837
902 | 932
963
978 | 2,000
8,000
10,000 | | | 1554
1596
1611
1615 | hydrocarbon
dehydrophenanthrane
dihydrophenanthrene
hydrocarbon | 912
815 | 974
973 | *
6,000
2,000
* | | | 1620
1622 | methylfluorene
hydrocarbon | 890 | 982 | 6,000 | | | 1629
1642
1668
1678 | methylfluorene
methylfluorene
hydrocarbon
hydrocarbon | 684
697
 | 916
959 | 4,000
2,000
*
* | | | 1685
1722
1731 ₀ | dibenzothiophene
phenanthrene
hydrocarbon | 780
939 | 966
984 | 10,000
110,000
* | | | 1733
1741 | anthracene
hydrocarbon | 899
- | 957
 - | 2,000
* | | Table 5 (con.) | Base-Neu | tral: | | | | |--------------------------------------|--|--------------------------|--------------------------|------------------------------| | 1781 | 9-H-carbazole | 813 | 973 | 10,000 | | 1804 | 1-phenylnaphthalene | 754 | 905 | 2,000 | | 1820 | methyldibenzothiophene | 734 | 940 | 2,000 | | 1840
1845 | hydrocarbon
methylphenanthrene | 908 | 974 | 8,000 | | 1852 | methylphenanthrene | 895 | 980 | 8,000 | | 1877 | methylphenanthrene | 722 | 879 | 6,000 | | 1926 | 2-phenylnaphthalene | 869 | 967 | 4,000 | | 1946 | hydrocarbon | | | * | | 1962 | dimethylphenanthrene | 766 | 926 | <2,000 | | 1972 | dimethylphenanthrene | 715 | 946 | <2,000 | | 1991 | dimethylphenanthrene | 771 | 959 | 2,000 | | 2025 | fluoranthene | 956 | 994 | 4,000 | | 2046 | hydrocarbon | | | * | | 2077 | pyrene | 944 | 985 | 2,000 | | 2168 | methylpyrene methylpyrene methylpyrene methylpyrene methylpyrene methylpyrene | 844 | 964 | 4,000 | | 2185 | | 890 | 943 | 2,000 | | 2190 | | 605 | 857 | 2,000 | | 2212 | | 808 | 955 | <2,000 | | 2220 | | 797 | 933 | <2,000 | | 2235
2279
2321
2332
2383 | <pre>hydrocarbon 1,1':2',1" terphenyl benzo/B/naphtho/2,1-D/thiophene benzo/C/phenanthrene benz/A/anthracene</pre> | 713
858
783
917 | 860
938
851
981 | * <2,000 <2,000 <2,000 4,000 | | 2393 | <pre>chrysene benzo/K/fluoranthene perylene benzo/g,h,i/perylene</pre> | 856 | 952 | 4,000 | | 2644 | | 848 | 883 | <2,000 | | 2701 | | 879 | 891 | <2,000 | | 3017 | | 752 | 813 | <2,000 | ^{*&}quot;hydrocarbon" refer to a series of alkanes which cannot be distinguished by mass spectrometry — Total estimated concentration 70,000 $\mu g/L$. Table 5 (con.) | Acid | • | | | | |---|---|--|--|-------------------------------------| | 539
679
720
846
884 | <pre>phenol methylphenol methylphenol dimethylphenol dimethylphenol</pre> | 958
911
895
602
895 | 991
992
981
992
984 | 50
60
300
20
100 | | 921
1028
1030
1036
1096
1604 | dimethylphenol ethylmethylphenol benzeneacetic acid methylbenzoic acid methylbenzoic acid 2-naphthalene carboxylic acid | 651
756
876
694
762
771 | 852
915
960
923
911
987 | <20
<20
20
40
100
20 | | Volatile: | · | | | | | 58
154
170
182
215 | methylene chloride
pentane
cyclohexane
thiophene
methylcyclopentene | 758
945
917
831
820 | 976
960
972
938
859 | 5

8
 | | 218
242
259
268
278 | benzene cyclo heptene methylcyclohexane tetrahydro-2-methyl-thiophene methylthiophene | 921
838
892
794
837 | 950
885
994
879
962 | 240

 | | 312
332
359
361
365 | toluene = mode not | 866
754
532
788
708 | 980
923
963
912
823 | 270

370
 | | 367
372
394 | methylheptane
dimethylthiophene
dimethylheptane | 897
694
925 | 979
954
992 |
 | Table 6 SLP #4 | Scan Volatiles: | Tentative
Identification | <u>Purity</u> | <u>Fit</u> | Est. Conc.
(µg/L) | |-----------------|-----------------------------|---------------|------------|----------------------| | 58 | methylene chloride | 890 | 995 | 12 | | 153 | pentane | 911 | 949 | | | 219 | benzene | 742 | 987 | 1 | | 220 | trichloroethene | | | <1 | | 304 | tetrachloroethene | 265 | 818 | <1 | | 205 | | | | | | 325 | trimethylbenzene | 837 | 965 | | | 395 | trimethylbenzene | 883 | 993 | | | 397 | trimethylbenzene | 820 | 994 | | | | | | | | Acid/Base-neutral (sample received broken).